The underwater environment is a dark and murky place, where many animals must rely on their sense of hearing in order to survive. Many toothed whale (odontocete) species are highly vocal and use a complex variety of calls to communicate with one another. They also employ echolocation (animal sonar) to distinguish underwater objects and hone in on their prey. By this complex system of echolocation, toothed whales can determine the size, shape, speed, distance, and even some of the internal structures of objects in the water.

Beluga whales in particular are especially adapted to life underwater, and demonstrate fantastic examples of this strong dependence on sound. Belugas live in the north, and as such often find themselves in the dark much of the year. They must also navigate underneath ice flows in search of air holes. Belugas are extremely vocal and the frequency and large repertoire of their vocalizations has earned them the nickname “sea canaries.” In fact, the overstated melon-like structure found at the front of a beluga’s head acts as an acoustical lens to focus these sound waves into a beam, which are then projected forward into the water in front of the whale. When a beluga produces a noise, the “melon” also changes shape.

Toothed whales have specialized fats associated with their jaws, allowing them to efficiently convey sound waves from the water to their ears, but until recently, the hearing system of toothless baleen whales (mysticetes) has remained a mystery. Scientists know they emit long, low frequency sounds which can travel miles and miles across the ocean, but it was speculated that mysticetes did not evolve sophisticated auditory systems because they graze on plankton and schooling fish rather than utilize echolocation to find prey.

Baleen whales do not have enlarged canals in their jaws for specialized fats or a prominent melon-like structure like toothed whales, but a new study published by researchers at Woods Hole Oceanographic Institution has revealed that minke whales – a baleen whale species – also have fats leading to their ears! This could potentially mean that the fats in both types of whales may share a common evolutionary origin.

Studies on baleen whales are tricky because specimens are hard to obtain.  Unlike toothed whales, they are large, are not in human care, rarely strand on beaches and decompose quickly when they do. For the Woods Hole project, lead author Maya Yamato conducted research using seven heads of deceased minke whales that had stranded on beaches near Cape Cod. These were scanned using computerized tomography (CT) and magnetic resonance imaging (MRI) to generate a 3D image of the whales’ internal anatomy with the bones and soft tissue intact and in their undisturbed natural positions. This provided an unprecedented look at their internal anatomy.

The research showed that the minke whales had a “large, well-formed fat body” connecting to the ears, providing a potential transmission pathway guiding sound from the environment to their inner ears.  This was the first successful study of baleen whale head anatomy using cutting-edge imaging techniques, and has provided an important addition to the understanding of mysticete auditory systems. You can view the complete article here.

Image of a minke whale skull. The fats (shown in yellow) associated with the ears (shown in purple) may transmit sound waves from the water to the ears inside the whales’ head.

Have you spotted a minke whale lately? They are rather elusive on our coast but can be found year-round. Minke whales are the smallest baleen whale species here in B.C. and can be identified by a large, curved dorsal fin and white bands on their pectoral flippers.  To learn more about minke whales, check out this page of Vancouver Aquarium’s B.C. Cetacean Sightings Network’s website.  To report a whale, dolphin or porpoise sighting, click here.

Related Posts

One Response

  1. Becca

    I never knew all of that about the minke whales! Thank you for informing me Vancouver Aquarium!

    Reply

Leave a Reply

Your email address will not be published.